Determination of the Number of Active Oxygen Species on the Surface of Cr₂O₃ Catalysts

AKIRA MIYAMOTO, TOSHIAKI UI, AND YUICHI MURAKAMI

Department of Synthetic Chemistry, Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464, Japan

Received August 10, 1982; revised October 21, 1982

The number of active oxygen species (O_s) on the surface of Cr_2O_3 catalysts was determined by using the rectangular pulse technique coupled with the reaction of NH₃ with a preoxidized catalyst, i.e., 2 NH₃ + 3O₅ \rightarrow N₂ + 3H₂O and 2NH₃ + 4O₅ \rightarrow N₂O + 3H₂O. The observed number of active oxygen species was found not to change with experimental variables such as temperature, carrier gas flow rate, weight of catalyst, and pulse width. The area occupied by a site, which is defined as the BET surface area divided by the number of active oxygen species, was almost constant for three kinds of Cr₂O₃ catalysts prepared by different methods, and it was close to literature data.

INTRODUCTION

Determination of the number of active sites on metal oxide catalysts has been one of the most important subjects of investigations in heterogeneous catalytic chemistry (1-13). In our previous studies (11-13), we have developed the rectangular pulse technique to determine the number of surface V=O species on vanadium oxide catalysts. In this study, we applied this technique to determining the number of active oxygen species on the surface of Cr₂O₃ catalysts. Cr₂O₃ catalysts are active for various reactions, such as oxidations of CO and hydrocarbons, dehydrogenations of butane, hydrogenation of ethylene, polymerization of ethylene and propylene, dehydrocyclization of paraffin to aromatics, synthesis of methanol, and reduction of NO with CO or NH₃ (14-29). Interesting methods have also been developed to determine the number of the surface oxygen species or of the coordinately unsaturated Cr ion, which include the hydrazine solution method, the KI method, the transient response method, and the chemisorption of NO, CO, or O_2 (1, 2, 16, 20, 30). We can therefore compare results obtained by using the rectangular pulse technique with those obtained by these previous methods. It should be emphasized that, in addition to the number of the surface oxygen species, behaviors in the reoxidation of the surface by subsurface oxygen atoms can be investigated by using the rectangular pulse technique (11-13).

EXPERIMENTAL

Catalysts and Reagents

Three kinds of Cr_2O_3 , denoted by $Cr_2O_3(A)$, $Cr_2O_3(B)$, and $Cr_2O_3(C)$, were used as catalysts. $Cr_2O_3(A)$ was prepared by calcinating Cr_2O_3 (Kishida Kagaku) in air at 723K for 3 h. $Cr_2O_3(B)$ was prepared by thermal decomposition of ammonium chromate (Hayashi Junyaku) in a stream of O_2 at 773K for 3 h. $Cr_2O_3(C)$ was prepared by the hydrolysis of chromium nitrate with an ammoniacal solution, followed by filtration and subsequent calcination in a stream of N_2 at 773K for 3 h. The catalyst was then pressed and sieved in the range 28–48 mesh.

A carrier gas (helium) was purified by the use of titanium metal sponge heated above 1073K, and a Molecular Sieve trap. Commercial $NH_3(99.9\%$ purity), NO(99.5% pu-

rity), CO(99.9% purity), and $O_2(99.8\%$ purity) were used without further purification.

Apparatus and Procedure

The rectangular pulse apparatus employed in this study was almost the same as that described previously (11-13, 31). When the selectivities to N_2 and N_2O in the reaction of the rectangular pulse of NH₃ with the preoxidized catalyst were determined, a silica-gel column (50 cm in length) was used instead of the liquid nitrogen trap (13 in Fig. 1 of Ref. (11) or in Fig. 2 of Ref.(31) after the reactor to analyze N_2 and N_2O chromatographically. Similarly, when the reaction of CO with the surface oxygen on the catalyst was examined, a Porapak Q column (2 m in length) was used instead of the liquid nitrogen trap. Unless otherwise specified, the rectangular pulse experiments were conducted under the following standard conditions: weight of catalyst, 0.01–0.2 g; flow rate of the carrier gas, 150 $cm^3 min^{-1}$; pulse width, 60 s; reaction temperature, 525–643K. Initial concentrations of individual components in the rectangular pulse were as follows: $C_{\rm NH_3}^{\circ} = 1.10 \ \mu mol$ cm⁻³ for the rectangular pulse of NH₃; C_{NO}° = 0.24 μ mol cm⁻³ and $C_{\rm NH_3}^{\circ}$ = 0.96 μ mol cm⁻³ for the rectangular pulse of NO and NH₃ mixture; $C_{CO}^{\circ} = 1.10 \,\mu\text{mol cm}^{-3}$ for the rectangular pulse of CO. Before every measurement, the catalyst was routinely preoxidized in a stream of O_2 (150 cm³ min⁻¹) for 20 min at 773K and cooled to a reaction temperature in the stream of O₂. Then the O_2 supply was stopped and the carrier gas (helium) was introduced. The rectangular pulse of NH₃, CO, or a mixture of NO and NH₃ was introduced at various times after introduction of the carrier gas.

An X-ray diffraction diagram of the catalyst was measured on a Rigaku GF-2035 X-ray diffractometer using a Cu target. An electron micrograph of the catalyst was obtained on a Hitachi H-700H electron microscope. The BET surface area of the catalyst was determined by using a conventional flow-type apparatus with N_2 as adsorbate.

FIG. 1. X-Ray diffraction diagrams of Cr_2O_3 catalysts.

RESULTS

X-Ray diffraction. Figure 1 shows X-ray diffraction diagrams of $Cr_2O_3(A)$, $Cr_2O_3(B)$, and $Cr_2O_3(C)$. All of the diffraction peaks were assigned to α -Cr₂O₃, while no peaks of other compounds such as CrO₂ and CrO₃ were observed in the diffraction diagrams. This indicates that the Cr₂O₃(A), Cr₂O₃(B), and Cr₂O₃(C) catalysts are mainly composed of α -Cr₂O₃.

Concentration profiles of N_2 and the amount of the initial sharp N_2 . The number of surface V=O species on vanadium oxide catalysts has been determined by the concentration profile of N_2 produced by the reaction of the NO and NH₃ mixture with the preoxidized V_2O_5 catalyst (11–13). Preliminary experiments, however, indicated that this method cannot be applied to determining the number of active oxygen species on Cr₂O₃. This was because the reduced Cr₃O₃ catalyst was also active for the reaction of NO with NH₃ and because the preoxidized Cr₂O₃ oxidized NH₃ to form N₂ and N₂O.

Figure 2 shows examples of the concentration profiles of N_2 produced by the reaction of the rectangular pulse of NH_3 with the Cr_2O_3 catalyst. As shown, the concentration profile of N_2 consisted of two parts—initial sharp N_2 and tailing N_2 . Only the initial N_2 peak was observed at 536K. At higher temperatures such as 578 and

FIG. 2. Examples of concentration profiles of N_2 produced by the reaction of the rectangular pulse of NH₃ with the preoxidized Cr₂O₃(A) catalyst at various temperatures. Experiments were conducted under the standard conditions described under Experimental.

618K, the tailing of N_2 appeared and the concentration of N₂ at the tailing part became greater with increasing temperature. Similar profiles of N_2 were observed for $Cr_2O_3(B)$ and $Cr_2O_3(C)$ catalysts also. Taking into account the results of simulation of the surface reaction and diffusion of oxygen in the metal oxide (11), the initial N₂ peak was separated from the tailing part by the dotted line shown in Fig. 2. The amount of the initial N₂ thus determined (A_{N_2}) is shown in Fig. 3 as a function of temperature. As shown, A_{N_2} was almost constant at temperatures higher than 560K for all of the catalysts. It was also found that the constant value did not change with experimental variables such as the weight of catalyst, the carrier gas flow rate, or the time introducing the NH₃ pulse after having changed the gas from O_2 to He by turning the sixway valve.

Selectivity to N_2 and N_2O . In addition to N_2 , N_2O was produced by the reaction of

FIG. 3. The amount of the initial sharp $N_2(A_{N_2})$ at various temperatures. Circles: $Cr_2O_3(A)$; triangles: $Cr_2O_3(B)$; squares: $Cr_2O_3(C)$. Experiments were conducted under the standard conditions.

the NH₃ pulse with the preoxidized Cr₂O₃ catalyst. Figure 4 shows the results of the selectivity to N₂O(S_{N_2O}) at various temperatures. S_{N_2O} for the Cr₂O₃(A) was almost constant and independent of the reaction temperature. S_{N_2O} for the Cr₂O₃(B) and Cr₂O₃(C) slightly decreased with increasing reaction temperature.

Amount of CO_2 produced by the reaction of the CO pulse with the preoxidized Cr_2O_3

FIG. 4. Selectivity to $N_2O(S_{N_2O})$ in the reaction of the rectangular pulse of NH₃ with the preoxidized Cr₂O₃ catalyst at various temperatures. Circles: Cr₂O₃(A); triangles: Cr₂O₃(B); squares: Cr₂O₃(C). Experiments were conducted under the standard conditions using a silica-gel column instead of the liquid nitrogen trap.

FIG. 5. Amount of CO_2 produced by the reaction of the rectangular pulse of CO with the preoxidized Cr_2O_3 catalyst (A_{CO_2}) at various temperatures. Circles: $Cr_2O_3(A)$; triangles: $Cr_2O_3(B)$; squares: $Cr_2O_3(C)$. Experiments were conducted under the standard conditions using a Porapak Q column instead of the liquid nitrogen trap.

catalyst (A_{CO_2}) . Figure 5 shows results of A_{CO_2} at various temperatures. A_{CO_2} for the $Cr_2O_3(A)$ was almost constant and independent of the reaction temperature, whereas A_{CO_2} for $Cr_2O_3(B)$ and $Cr_2O_3(C)$ increased monotonically with increasing temperature. Since the shape of the produced CO_2 was deformed considerably by the Porapak Q column, it was difficult to separate the produced CO_2 into the initial and tailing parts. A_{CO_2} was the total amount of CO_2 produced by the reaction of the CO pulse with the preoxidized Cr_2O_3 catalyst.

Electron micrographs of catalyst. Figure 6a shows an example of transmission electron micrographs of the $Cr_2O_3(C)$ catalyst. From the micrographs, particle size distribution for the catalyst was determined as shown in Fig. 6b. The mean particle diameter and BET surface area of $Cr_2O_3(C)$ were calculated from the distribution to be 14 nm and 83 m² g-cat⁻¹, respectively. The calculated BET surface area does not differ significantly from the observed one (Table 1). This indicates that almost all of the catalyst particles were observed by the electron mi-

croscope. As can be seen from the electron diffraction pattern of the $Cr_2O_3(C)$ catalyst in Fig. 6c, the catalyst exposed various crystal planes of α - Cr_2O_3 to its surface.

DISCUSSION

Number of Active Oxygen Species on the Surface

According to the mechanism of the oxidation of NH_3 on metal oxide catalysts (32), N_2 and N_2O are produced by the following equations:

$$2\mathbf{NH}_3 + 3\mathbf{O}_s \rightarrow \mathbf{N}_2 + 3\mathbf{H}_2\mathbf{O}, \qquad (1)$$

$$2NH_3 + 4O_s \rightarrow N_2O + 3H_2O$$
, (2)

where O_s is an active oxygen species on the catalyst surface. These equations indicate that the number of active oxygen species responsible for the initial peak (A_0) can be calculated from the amount of the initial sharp $N_2(A_{N_2})$ and selectivity to $N_2O(S_{N_2O})$ by

$$A_0 = A_{\rm N_2}[3 + 4S_{\rm N_2O}/(1 - S_{\rm N_2O})]. \quad (3)$$

Figure 7 shows results of A_0 at various temperatures which are calculated from the results of A_{N_2} and S_{N_2O} in Figs. 3 and 4. As shown in Fig. 7, A_0 is almost constant at temperatures above 570K for all catalysts. Since the decrease of A_0 at low temperatures is ascribable to unreacted O_s species remaining on the catalyst because of the slower reaction rate at lower temperatures (11, 12), the value of A_0 in the constant region indicates the number of active oxygen species on the catalyst surface. The aver-

TABLE 1

The BET Surface Area (S_{BET}) , Number of Active Oxygen Atoms (L), Concentration of Active Oxygen Atoms (L/S_{BET}) , and Area Occupied by an Active Oxygen Atom (σ)

Catalyst	S _{BET} (m²/g-cat)	L (µmol/g-cat)	L/S _{BET} (µmol/m²)	σ (Ų)
Cr ₂ O ₃ (A)	3.5	26.3	7.5	22.1
$Cr_2O_3(B)$	23.4	255.0	10.9	15.2
$Cr_2O_3(C)$	64.7	463.4	7.2	23.2

FIG. 6. (a) An example of transmission electron micrographs of the $Cr_2O_3(C)$ catalyst. (b) Particle size distribution determined by the electron micrographs of the $Cr_2O_3(C)$ catalyst. (c) Electron diffraction pattern of the $Cr_2O_3(C)$ catalyst.

FIG. 6-Continued.

age value of A_0 in the constant region is defined as L and the result is shown in Table 1 for $Cr_2O_3(A)$, $Cr_2O_3(B)$, and $Cr_2O_3(C)$. This table also shows the area occupied by an active oxygen atom (σ) which is defined as S_{BET} divided by L to-

FIG. 7. The number of active oxygen species (A_0) measured at various temperatures. Circles: Cr₂O₃(A); triangles: Cr₂O₃(B); squares: Cr₂O₃(C). A_0 was calculated from the results of A_{N_2} (Fig. 3) and S_{N_2O} (Fig. 4) coupled with Eq. (3).

gether with the concentration of the active oxygen species (L/S_{BET}). As shown, σ does not differ significantly with the kind of catalysts, indicating the validity of the proposed method.

Applicability of the Proposed Method to the Determination of the Number of Active Oxygen Species on Cr₂O₃ Catalysts

Although almost constant value of σ indicates the availability of the proposed method, the following points should be discussed as further evidence for the validity of the method.

1. Concentration profile of N_2 . As shown in Fig. 2, the concentration profile of N_2 produced by the reaction of NH₃ pulse with the catalyst shows the initial sharp N₂ followed by the tailing part. The concentration at the tailing part increases with increasing temperature. According to the results of simulation of these processes (11), the ini-

tial sharp N_2 is due to the reaction of NH_3 with the surface oxygen species, while the tailing part is due to the reoxidation of the surface by subsurface oxygen species. The increase in the concentration at the tailing part with increasing temperature means that the reoxidation of the surface takes place more readily at higher temperature. Such a behavior in the tailing part has been observed for the reaction of the NO and NH_3 mixture with the V_2O_5 catalyst (11, 12). An additive sometimes affects the diffusivity of oxygen atoms in metal oxide. The presence of the tailing part in the concentration profile of N₂ shown in Fig. 2 indicates that this problem can be investigated by the rectangular pulse technique.

2. Constancy of A_0 . Since the number of active oxygen species on Cr₂O₃ is a quantity which depends only on the structure of the catalyst, it should not change with experimental variables such as the reaction temperature or the weight of the catalyst. The constancy of A_0 above 570K (Fig. 7) satisfies the condition. As mentioned above, A_0 did not vary with the carrier gas flow rate, the weight of the catalyst, or the pulse width. The desorption of the active oxygen species from the catalyst surface did not affect the measurements, provided that the catalyst was cooled to the reaction temperature in a stream of O₂ after treatment with O_2 at 773K.

3. Stoichiometry of the reaction of the surface oxygen with NH_3 . According to Kobayashi and Kobayashi (20), the surface oxygen species (O_s) on Cr₂O₃ reacts with CO to form CO₂:

$$O_s + CO \rightarrow CO_2.$$
 (4)

This means that the number of active oxygen species can alternately be determined by the reaction of CO with the preoxidized catalyst. The average value of the amount of the produced CO₂ was determined from the results shown in Fig. 5 as follows: 34.6, 281.5, and 466.3 μ mol g-cat⁻¹ for Cr₂O₃(A), $Cr_2O_3(B)$, and $Cr_2O_3(C)$, respectively. Taking into account the difference in the experimental conditions, these values are close to L determined by the reaction of the rectangular pulse of NH₃ with the preoxidized catalyst coupled with the stoichiometries described by Eqs. (1) and (2). As shown in Fig. 5, A_{CO_2} increases with increasing temperature. Since the effect of the reoxidation of the surface by the subsurface oxygen is not separated from A_{CO_2} , this increase in A_{CO_2} is considered to be due to the reoxidation of the surface by the subsurface oxygen, which increases with increasing temperature. These data indicate the validity of the stoichiometries of Eqs. (1) and (2).

4. Area occupied by a site (σ). As shown in Table 1, σ is almost constant for all of the catalysts. Strictly speaking, however, σ changes slightly with the catalyst. According to the results of electron microscopy, various crystal planes are exposed to the surface. Since the density of the active oxygen species may change with the crystal plane, the slight difference in σ may be ascribable to the difference in crystal planes exposed to the catalyst surface. The area occupied by a surface oxygen atom (σ) for Cr₂O₃ catalyst has been determined by Kobayashi and Kobayashi as follows: 13.4 and 11.6 $Å^2$ by using the hydrazine solution method and the transient response method, respectively (20). According to Yao and Shelef (2), the area occupied by an adsorbed NO molecule is 15.4 Å². The results of oxygen chemisorption on unsupported Cr_2O_3 obtained by Bridges et al. (16) and Gonzalez Tejuca and Pajares (30) lead to about 18–19 and 20 $Å^2$, respectively, as the value of σ . These values are close to the value of σ determined by using the rectangular pulse technique, indicating the validity of the proposed method.

ACKNOWLEDGMENT

The authors thank Mr. Masatoshi Yamada (Kinuura Research Department, JGC Co.) for the measurement of electron micrographs of catalysts.

REFERENCES

- 1. Farrauto, R. J., AICHE Symp. Ser. 70, 9 (1974), and references therein.
- 2. Yao, H. C., and Shelef, M., "The Catalytic Chemistry of Nitrogen Oxides" (R. L. Klimisch and J. G. Larson, Eds.), p. 45. Plenum, New York, 1975, and references therein.
- 3. Pope, D., Walker, D. S., Whalley, L., and Moss, R. L., J. Catal. 31, 335 (1973).
- 4. Parakh, B. S., and Weller, S. W., J. Catal. 47, 100 (1977).
- 5. Lund, C. R. F., Schorfheide, J. J., and Dumesic, J. A., J. Catal. 57, 105 (1979).
- 6. Goldwasser, M. R., and Trimm, D. L., Ind. Eng. Chem. Prod. Res. Dev. 18, 27 (1979).
- 7. Liu, H. C., and Weller, S. W., J. Catal. 66, 65 (1980).
- 8. Fierro, J. L. C., Mendioroz, S., Pajares, J. A., and Weller, S. W., J. Catal. 65, 263 (1980).
- 9. Liu, H. C., Yuan, L., and Weller, S. W., J. Catal. 61, 282 (1980).
- 10. Ramakrishnan, N. R., and Weller, S. W., J. Catal. 67, 237 (1981).
- 11. Miyamoto, A., Yamazaki, Y., Inomata, M., and Murakami, Y., J. Phys. Chem. 85, 2366 (1981).
- 12. Inomata, M., Miyamoto, A., and Murakami, Y., J. Phys. Chem. 85, 2372 (1981).
- 13. Murakami, Y., Inomata, Y., Miyamoto, A., and Mori, K., Proc. 7th Int. Congr. Catal. Tokyo, p. 1344. Kodansha, Tokyo, and Elsevier, Amsterdam (1981).
- 14. Burwell, R. L., Haller, G. L., Taylor, K. C., and Read, J. F., Advan. Catal. 20, 1 (1969), and references therein.
- 15. Poole, C. P., Jr., and MacIver, D. S., Advan. Catal. 17, 233 (1967), and references therein.

- 16. Bridges, J. M., Macluer, D. S., and H. H. Tobin, Proc. 2nd Int. Congr. Catal. Paris, p. 2161 (1960).
- 17. Van Reijen, L. L., Sachatler, W. M. H., Cossee, P., and Brown, D. M., Proc. 3rd Int. Congr. Catal. Amsterdam, p. 827 (1964).
- 18. Dyne, S. R., Butt, J. B., and Haller, G. L., J. Catal. 25, 378 (1972).
- 19. McDaniel, M. P., and Burwell, R. L., Jr., J. Catal. 36, 394, 404 (1975).
- 20. Kobayashi, M., and Kobayashi, H., Bull. Chem. Soc. Japan 49, 3009, 3014, 3018 (1976).
- 21. Shelef, M., J. Catal. 15, 289 (1969).
- 22. Shelef, M., Otto, K., and Gandhi, H., J. Catal. 12, 361 (1968).
- 23. Yao, Y.-F. Y., J. Catal. 28, 139 (1973).
- 24. Zecchina, A., Coluccia, S., Gulielminotti, E., and Ghiotti, G., J. Phys. Chem. 75, 2774 (1971).
- 25. Zecchina, A., Coluccia, S., Cerruti, L., and Borello, E., J. Phys. Chem. 75, 2783 (1971).
- 26. Niiyama, H., Ebitani, A., Murata, K., and Echigoya, E., J. Catal. 48, 194 (1977).
- 27. Niiyama, H., Murata, K., and Echigoya, E., J. Catal. 48, 201 (1977).
- 28. Niiyama, H., Murata, K., Can, H. V., and Echigoya, E., J. Catal. 63, 1 (1980).
- 29. Haller, G. L., John, C. S., and Tyler, J. K., Proc. 7th Int. Congr. Catal. Tokyo, p. 965. Kodansha, Tokyo, and Elsevier, Amsterdam (1981).
- 30. Gonzalez Tejuca, L., and Pajares, J. A., An. Quim. 68, 1067 (1972).
- 31. Miyamoto, A., Yamazaki, Y., Hattori, T., Inomata, M., and Murakami, Y., J. Catal. 74, 144 (1982).
- 32. Il'chenko, N. I., and Golodets, G. I., J. Catal. 39, 57, 73 (1975).